Cadence-dependent changes in corticospinal excitability of the biceps brachii during arm cycling.
نویسندگان
چکیده
This is the first study to report the influence of different cadences on the modulation of supraspinal and spinal excitability during arm cycling. Supraspinal and spinal excitability were assessed using transcranial magnetic stimulation of the motor cortex and transmastoid electrical stimulation of the corticospinal tract, respectively. Transcranial magnetic stimulation-induced motor evoked potentials and transmastoid electrical stimulation-induced cervicomedullary evoked potentials (CMEPs) were recorded from the biceps brachii at two separate positions corresponding to elbow flexion and extension (6 and 12 o'clock relative to a clock face, respectively) while arm cycling at 30, 60 and 90 rpm. Motor evoked potential amplitudes increased significantly as cadence increased during both elbow flexion (P < 0.001) and extension (P = 0.027). CMEP amplitudes also increased with cadence during elbow flexion (P < 0.01); however, the opposite occurred during elbow extension (i.e., decreased CMEP amplitude; P = 0.01). The data indicate an overall increase in the excitability of corticospinal neurons which ultimately project to biceps brachii throughout arm cycling as cadence increased. Conversely, changes in spinal excitability as cadence increased were phase dependent (i.e., increased during elbow flexion and decreased during elbow extension). Phase- and cadence-dependent changes in spinal excitability are suggested to be mediated via changes in the balance of excitatory and inhibitory synaptic input to the motor pool, as opposed to changes in the intrinsic properties of spinal motoneurons.
منابع مشابه
Phase- and Workload-Dependent Changes in Corticospinal Excitability to the Biceps and Triceps Brachii during Arm Cycling
This is the first study to examine corticospinal excitability (CSE) to antagonistic muscle groups during arm cycling. Transcranial magnetic stimulation (TMS) of the motor cortex and transmastoid electrical stimulation (TMES) of the corticospinal tract were used to assess changes in supraspinal and spinal excitability, respectively. TMS induced motor evoked potentials (MEPs) and TMES induced cer...
متن کاملCorticospinal excitability of the biceps brachii is higher during arm cycling than an intensity-matched tonic contraction.
Human studies have not assessed corticospinal excitability of an upper-limb prime mover during arm cycling. The purpose of the present study was to determine whether supraspinal and/or spinal motoneuron excitability of the biceps brachii was different between arm cycling and an intensity-matched tonic contraction. We hypothesized that spinal motoneuron excitability would be higher during arm cy...
متن کاملChanges in Corticospinal and Spinal Excitability to the Biceps Brachii with a Neutral vs. Pronated Handgrip Position Differ between Arm Cycling and Tonic Elbow Flexion
The purpose of this study was to examine the influence of neutral and pronated handgrip positions on corticospinal excitability to the biceps brachii during arm cycling. Corticospinal and spinal excitability were assessed using motor evoked potentials (MEPs) elicited via transcranial magnetic stimulation (TMS) and cervicomedullary-evoked potentials (CMEPs) elicited via transmastoid electrical s...
متن کاملRunning Head: Modulation of corticospinal excitability during arm cycling
44 45 Human studies have not assessed corticospinal excitability of an upper-limb prime mover 46 during arm cycling. The purpose of the present study was to determine whether supraspinal 47 and/or spinal motoneurone excitability of the biceps brachii was different between arm cycling 48 and an intensity-matched tonic contraction. We hypothesized that spinal motoneurone 49 excitability would be ...
متن کاملArm posture-dependent changes in corticospinal excitability are largely spinal in origin.
Biceps brachii motor evoked potentials (MEPs) from cortical stimulation are influenced by arm posture. We used subcortical stimulation of corticospinal axons to determine whether this postural effect is spinal in origin. While seated at rest, 12 subjects assumed several static arm postures, which varied in upper-arm (shoulder flexed, shoulder abducted, arm hanging to side) and forearm orientati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 114 4 شماره
صفحات -
تاریخ انتشار 2015